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Abstract
We derive a theory of light-induced magnetization of an interacting particle system, which
describes a model diluted magnetic semiconductor. We set up a many-body Hamiltonian that
includes electron and hole kinetic energies, carrier–photon and carrier–local-moment
interactions and all the Coulomb interactions. Using Heisenberg equations of motion and a
mean-field approximation, we derive expressions for the carrier spin density and excitonic
amplitudes. Non-equilibrium relaxation is included phenomenologically. The interdependence
of carrier spin density and the local-moment magnetization is calculated self-consistently. We
apply our theory of photo-magnetization to Hg1−xMnx Te, choosing parameters of the model
appropriate to this system. Our results for the photo-magnetization versus the input laser power
agree qualitatively with the observed trends in this system. We also study the
photo-magnetization as a function of temperature, manganese concentration and photon energy
and the results obtained are along expected lines.

1. Introduction

The interplay between light and magnetism through magneto-
optic effects such as the Faraday rotation and the Kerr
effect has been well known for a long time [1]. The
former refers to the rotation of the plane of polarization
per unit distance of the linearly polarized light propagating
along the direction of the magnetic field in a crystal;
the latter, on the other hand, describes the conversion
of plane polarized light into an elliptical polarization on
reflection along the magnetization direction, which is a high
symmetry direction, by the surface of a magnetic crystal.
However, photo-magnetization or light-induced magnetization
has currently emerged as an interesting and important
area in condensed matter research. Indeed it has been
observed in a variety of systems such as cyanometalate-based
magnets [2–6], spin crossover complexes [7], diluted magnetic
semiconductors [8, 9] and their quantum wells [10]. Other
materials of interest in this regard are doped manganites [11],
spinel ferrite films [12] and organic-based magnets [13]. Of

late, ferromagnetic semiconductors have attracted a great deal
of attention [14].

In the present work we focus on the photo-induced
paramagnetization in diluted magnetic semiconductors, par-
ticularly Hg1−x Mnx Te. It would be pertinent, therefore, to
review the experimental situation for this case. Krenn et al
[8] reported the observation of light-induced magnetization
in Hg1−x Mnx Te in the paramagnetic limits by a technique
combining optical pumping and a superconducting interference
detector. They showed that the magnetization appears due
to the orientation of Mn ions caused by spin transfer from
polarized electrons and holes to Mn centers in the process
of spin-flip exchange scattering. A detailed report of the
experiments by the same group followed later [9], who
analyzed the optically induced magnetization both in narrow
gap Hg1−xMnx Te and wide gap Cd1−x MnxTe [15] subjected
to circularly polarized light. Their analyses of Mn-spin
orientations by carriers include two mechanisms: (i) the
static polarization induced by the mean field of spin-polarized
electrons and (ii) the dynamic polarization caused by the s–d
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spin-flip scattering. The latter was shown to be suppressed by
Mn–Mn interactions. They also presented several systematics
concerning the light-induced magnetization in Hg1−xMnx Te
such as photo-magnetization versus laser power for fixed
photon energy, photo-magnetization versus exciting photon
energy and photo-magnetization versus temperature for fixed
laser power and frequency. They ascribed that the photo-
magnetization occurs in the absence of an external magnetic
field in the following way. Circularly polarized light creates
spin-polarized carriers, which in turn align the Mn ions, thus
creating magnetization. Efforts are made by the authors of the
experimental work to explain their own observations by semi-
empirical methods. However, their mechanisms lack the rigor
of many-body analyses of the phenomena.

Recently, we considered this problem [16], starting from
a many-body Hamiltonian for a system of photo-generated
electrons and holes, which are spin-split by magnetic ions
in the diluted magnetic semiconductor. An expression for
the photo-magnetization was obtained, following an equation
of motion method, as a function of the photon power and
the frequency. Damping of non-equilibrium carriers and spin
excitons was considered in a phenomenological way. The
drawbacks of the model are as follow. All the many-body
interactions such as electron–electron, hole–hole and electron–
hole interactions are not considered adequately. No attempt
has been made to develop a self-consistent magnetic field from
the interaction of the light field with the semiconductor and
the interactions between the carriers and the local magnetic
moments. Further, the theory was not parameterized in order
to reproduce some experimentally observed quantity.

Motivated by the above remarks and in view of the
current interest in the carrier-induced magnetization in the
magnetic and diluted magnetic semiconductors with regard
to their importance in spintronics, we decided to extend our
previous works further. In section 2, starting from a many-
body Hamiltonian for the electrons and holes, carrier–light
field, carrier–local-moment and all the Coulomb interactions,
we derive nonlinear equations for the carrier spin density.
The interdependence of the carrier spin density and the local-
moment magnetization is evaluated self-consistently. Finally,
we parameterize our model within reasonable physical limits
to quantify our theoretical calculation so as to compare with
a part of the experimental observations in the case of narrow
gap Hg1−x MnxTe [9]. This is the concluding section of our
work, which also discusses our results vis-à-vis some of the
experimental findings

2. Theory of light-induced magnetization

2.1. Model Hamiltonian

We consider the following Hamiltonian for the diluted
magnetic semiconductor subject to a light field as

H = H0 + Hint + Hc + Hls , (1)

where different terms are explained as follows:

H0 =
∑

�kσ

(εe
�k + Eg)c

†
�kσ

c�kσ −
∑

�kσ

εh
−�kd†

−�kσ
d−�kσ , (2)

In the above, H0 describes the Hamiltonian for band
electrons and holes. εe

k and εh
k are the energies of an electron

and a hole, respectively; Eg is the bandgap; (c† and c) and (d†

and d) are the creation and annihilation operators for electrons
and holes, respectively. σ represents the spin index and takes
both up- and down-spin states for the carriers. σ and −σ are
opposite spin states, i.e. for σ = ↑, −σ = ↓ and vice versa.

The second term in equation (1), which describes the
important exchange interaction between the electron and the
local moments, is obtained from the equation

Hint = 1
2

∑

j

J (�r)�σ · �Sj , (3)

where (1/2)�σ is the electron spin operator and �Sj is the spin
of the magnetic impurity at the j th site. J is the exchange
interaction and �σ are the Pauli spin matrices. Ignoring the spin
fluctuation terms, the interaction Hamiltonian is written as

Hint = 1
2 x N J (r)σz Sz, (4)

where the subscript z denotes the z components of the
respective operators. In equation (4), a virtual crystal
approximation, which is a standard practice in semiconductors,
is considered. Here x is the fraction of magnetic ions and N is
the total number of cations. Assuming an average exchange
interaction, we obtain the many-body Hamiltonian for the
electron-local-moment interaction as

Hint = 1
2 x 〈Sz〉

∑

n=c,v

Jn

∑

kη,η′
c†

n�kη
σzηη′ cn�kη′ (5)

where c and v stand for conduction and valence bands,
respectively. Here both η and η′ take ↑ and ↓ spin states.
Simplification of equation (5) leads to

Hint = 1
2 x〈Sz〉

∑

k

[Jc(c
†
ck↑cck↑ − c†

ck↓cck↓)

+ Jv(c
†
vk↑cvk↑ − c†

vk↑cvk↑)]. (6)

Assuming that the annihilation of a valence band electron at �k
is equivalent to the creation of a hole with −�k, and vice versa,
i.e. cv�k = d†

−�k and c†
v�k = d−�k we write the above equation in

terms of electron and hole operators as

Hint = 1
2 x〈Sz〉

∑

�k
{Je(c

†
�k↑c�k↑ − c†

�k↓c�k↓)

− Jh(d
†
−�k↑d−�k↑ − d†

−�k↓d−�k↓)}, (7)

where Jc was replaced by Je. We have neglected the
antiferromagnetic local-moment couplings.

The third term in equation (1) is given by

Hc = 1
2

∑

�q�k�k′σσ ′
V (�q)c†

�k+�qσ
c†

�k′−�qσ ′c�k′σ ′c�kσ

+ 1
2

∑

�q�k�k′σσ ′
V (�q)d†

�k+�qσ
d†

�k′−�qσ ′d�k′σ ′d�kσ

− 1
2

∑

�q�k�k′σσ ′
V (�q)c†

�k+�qσ
d†

�k′−�qσ ′d�k′σ ′c�kσ . (8)

Hc describes the Coulomb (electron–electron (e–e), hole–
hole (h–h) and electron–hole (e–h)) interactions. V (q) is the
Fourier transform of the Coulomb energy.
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The fourth term in equation (1) is

Hls = G
∑

�kα

(c†
kαd†

−⇀
k −α B + d−�k−αc�kα B†). (9)

Equation (9) describes the other important interaction of
the formulation, which is the interaction of the light field
with the semiconductor. B† and B are photon creation and
annihilation operators. G is an averaged coupling strength
between the semiconductor and the light field; α = ±
denoting α ± circular polarization of light, which fixes the spin
configurations of the photo-excited electrons and holes [17].
For simplicity, we assume α to be 1/2 both for electrons
and holes. Thus these are treated on a par with σ s and are
replaced by them in subsequent occurrences We consider only
resonant terms, i.e. an electron–hole pair is created by the
absorption of a photon or an electron–hole pair recombines
with the emission of a photon. In other words, energy non-
conserving terms are neglected. This is known as the rotating
wave approximation. Both excitonic (c†d†, dc) and photon
operators are time-dependent. It may be noted that photo-
induced ferromagnetism has recently been studied without any
specific polarization of the classical light field [18, 19].

We consider a mean-field approximation (MFA) and write
in the first order

H =
∑

�kσ

εe
�kσ

c†
�kσ

c�kσ −
∑

�kσ

εh
−�kσ

d†
−�kσ

d−�kσ

+ G
∑

�kσ

(c†
�kσ

d†
−�k−σ

B + d−�k−σ c�kσ B†), (10)

where

εe
�kσ

∼= εe
�k + Eg ± 1

2
x Je〈Sz〉 + 1

N
〈{[c�kσ ,Hc], c†

�kσ
}〉 (11)

and

εh
�kσ

∼= εh
�k ± 1

2
x Jh〈Sz〉 + 1

N
〈{[d�kσ ,Hc], d†

�kσ
}〉. (12)

The positive sign in the third term of equation (11) and the
second term in equation (12) and elsewhere in this paper
is taken for σ = ↑ and the negative sign for σ =↓. In
equations (11) and (12)

〈{[c�kσ ,Hc], c†
�kσ

}〉 = −
∑

�q
V (�q)ne

�k−�qσ

+ V (0)
∑

�k
(ne

�kσ
+ ne

�k−σ
) − V (0)

∑

�k
(nh

�kσ
+ nh

�k−σ
) (13)

and

〈{[d�kσ ,Hc], d†
�kσ

}〉 = −
∑

�q
V (�q)nh

�k−�qσ

+ V (0)
∑

�k
(nh

�kσ
+ nh

�k−σ
) − V (0)

∑

�k
(ne

�kσ
+ ne

�k−σ
). (14)

If we assume that the carriers are only intrinsic and Mn2+ spins
contribute no carriers, the last two terms in both equations (15)
and (16) cancel because the number of photo-generated
electrons would be equal to the corresponding number of holes,
and we have, from equations (11)–(14),

εe
�kσ

∼= εe
�k + Eg ± 1

2
x Je〈Sz〉 − 1

N

∑

�q
V (�q)ne

�k−�qσ
(15)

and

εh
�kσ

∼= εh
�k + Eg ± 1

2
x Jh〈Sz〉 − 1

N

∑

�q
V (�q)nh

�k−�qσ
(16)

where ne
�kσ

= 〈c†
�kσ

c�kσ 〉 and nh
�kσ

= 〈d†
�kσ

d�kσ 〉. It may be noted,

in passing, that Mn2+ ions act as acceptors in some (III, Mn)V
semiconductors, thus contributing to both itinerant and local-
moment magnetism [14].

2.2. Equations of motion

In order to derive equations of motion for the carrier density
and excitonic amplitudes, we consider Heisenberg’s equation
of motion of the type

ih̄
dQ

dt
= [Q, H ], (17)

where Q is a time-dependent operator. From equations (10)
and (17), we obtain

d

dt
(n̂e

�kσ
+ n̂h

�k−σ
) = −2i

h̄
G( Â†

�kσ−σ
B − Â�k,σ−σ B†) (18)

and

d

dt
Â†

�kσ−σ
= i

h̄
[(εe

�kσ
−εh

�k−σ
) Â†

�kσ−σ
− G(n̂e

�kσ
+ n̂h

−�k−σ
−1)B†].

(19)
Further n̂e

�kσ
= c†

�kσ
c�kσ , n̂h

�kσ
= d†

�kσ
d�kσ and Â†

�kσ−σ
= c†

�kσ
d†

−�k−σ
,

where the hat sign above n and A denotes the operator nature
of the quantities.

Since we are interested in the variation of the
magnetization as a function of the light field which is assumed
to be a classical one, B and B† are replaced respectively by
their average values β and β∗. We also replace the number
density and excitonic operators by their average values defined
as classical variables. We neglect quantum fluctuations and
assume a mean-field decoupling of the type 〈P Q〉 = 〈P〉〈Q〉.

We set ∑

�q
ne,h

�k−�qσ
=

∑

�k
ne,h

�kσ
, (20)

which holds good for a spatially homogeneous system by
the conservation of momentum [20]. Further we assume an
average inter-particle interaction and replace (1/N)

∑
�q V (�q)

by U . The damping of the carrier and excitonic number
densities is considered in a phenomenological way. With the
above approximations, equations (17) and (19) can be written
as
d

dt
(ne

�kσ
+ nh

−�k−σ
) = −2i

h̄
G(A†

�kσ−σ
β − A�k,σ−σ β∗)

+ γ c
σ−σ (ne

�kσ
+ nh

−�k−σ
) (21)

and
d

dt
A†

�kσ−σ
= i

h̄
[{Eg + x J 〈Sz〉 − U(ne

−�kσ
− nh

−�k−σ
)}A†

�kσ−σ

− G(ne
�kσ

+ nh
−�k−σ

− 1)β∗] + γ eh
�kσ−σ

A†
�kσ−σ

. (22)

In the above equations the number density and excitonic
operators are replaced by their mean values (without hats).
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J = Je + Jh. γ c and γ eh are the damping of the
carrier number and spin exciton amplitude, respectively. The
damping terms result from incoherent processes. Since
the damping mechanism is statistical in nature and is due
to random processes, it is included phenomenologically.
While the phenomenological treatment is certainly not valid
under all circumstances it has nevertheless been found to
represent in many cases the proper qualitative or even
quantitative descriptions of the observed phenomena. This
phenomenological procedure can be justified from first
principles by coupling the system to a heat bath. Further, in
equation (22), there would be a change of sign in the x J 〈Sz〉
term upon spin exchange (i.e. when σ = ↓ and −σ = ↑).

We now introduce explicit time dependence of the
excitonic and photon field variables and assuming that they
have the same frequency dependence, ω, we write A�kσ−σ =
Ã�kσ−σ e−iωt and β�kσ−σ = β̃�kσ−σ e−iωt . Substituting these
in equations (21) and (22), and considering only stationary
solutions, we obtain

Ã†
�kσ−σ

=
G(ne

�kσ
+ nh

−�k−σ
− 1)β̃∗

{Eg − h̄ω + x J 〈Sz〉 − U(ne
−�kσ

− nh
−�k−σ

)} − ih̄γ eh
�kσ−σ

(23)

and

γ c
σ−σ (ne

�kσ
+ nh

−�k−σ
) = 2i

h̄
G( Ã†

�kσ−σ
β̃ − Ã�k,σ−σ β̃∗). (24)

We assume

ne
�kσ

+ nh
−�k−σ

∼= ne
−�kσ

− nh
−�k−σ

∼= f e
�kσ

(25)

i.e. these are replaced by their average values f e
�kσ

. Thus,
with the help of equations (23) and (25), we obtain from
equation (24)

f e
�kσ

= 4(γ eh
σ−σ /γ c

σ−σ )G2(1 − f e
�kσ

)|β̃|2
[Eg − h̄ω + x J 〈Sz〉 − U f e

�kσ
]2 + (γ eh

σ−σ )2
. (26)

Denoting
∑

�k f e
�kσ

= nσ and assuming that the damping
parameters remain constant under spin exchange, i.e. γ c

↑↓ =
γ c

↓↑ = γ c and γ eh
↑↓ = γ eh

↓↑ = γ eh, which is valid in a mean-field
approximation, the up-and down-electron spin densities can be
written as

n↑(↓) = a(1 − n↑(↓))nph

1 + {b(ω, x) + cn↑(↓) ± xd}2
, (27)

where nph = |β̃|2 and is proportional to the photon density
and the dimensionless parameters are as follows: a =
4G2/h̄2γ ehγ c, b(ω, x) = (Eg − h̄ω)/h̄γ eh = b2(x) −
b1(ω), b2(x) = Eg(x)/h̄γ eh, b1(ω) = h̄ω/h̄γ eh, c =
−U/h̄γ eh and d = J 〈Sz〉/h̄γ eh. It may be noted that there
is interdependence between the local-moment magnetization,
which is proportional to 〈Sz〉, and the carrier spin density,
ms(n↑ − n↓). These are related by

〈Sz〉 = (1 − x)12SBs(ξ), (28)

where Bs(ξ) is the Brillouin function:

Bs(ξ) = 2S + 1

2S
coth

(
2S + 1

2S
ξ

)
+ 1

2S
coth

(
ξ

2S

)
, (29)

and the other quantities are ξ = yS, y = gμBHo/kBT and
Ho = ms J/2gμB. In equation (28), (1−x)12 is the probability
of finding a single magnetic ion with only non-magnetic ions
as its neighbors in an fcc lattice and S = 5

2 for Mn2+ ions.
The system in question, Hg1−x Mnx Te, crystallizes in the zinc-
blende structure. Since the conventional cell is fcc, where for a
given cation there are 12 nearest cation neighbors, this number
appears in the power in equation (28).

Equation (28) is a nonlinear equation for the up-and
down-spin electron densities. The nonlinearity is due to the
occurrence of n↑(↓) in the second term as well as in the last
term of the squared quantity in the denominator. In the absence
of the Coulomb term, there is still nonlinearity and finite spin
density. However, the spin density is zero if d = 0, implying
that the carrier–local-moment interaction is essential for the
spin density. Further, if a = 0, implying that the light coupling
is zero, both n↑ and n↓ are zero separately, which is due to
the fact that the spin-polarized carriers are generated by the
photons only. Thus the photo-magnetization of an itinerant
system can be independent of Coulomb interactions. A finite
Coulomb interaction can, however, be used to fine-tune the
results. Further temperature dependence is considered only
through the Brillouin function. It can also be incorporated via
the Fermi distribution function f e

�kσ
, but at the temperatures of

interest, its effect would be small.
Equation (27) is solved self-consistently to obtain the spin

density (n↑ − n↓). Analytic expressions for the spin density,
ms , can be obtained if we neglect the (cn↑(↓))

2 term in the
denominator of equation (27) in the small c approximation. In
that case the equation for ms is quadratic. This approximation
is discussed in our previous work [16]. The solutions of
equation (27) are obtained in the paramagnetic limit.

The light–carrier–local-moment interaction creates an
effective magnetic field, which acts both on the carriers and
the local moments. In the presence of such an interaction, the
photo-magnetization is given by [9]

M = − 1
2μBgeff(n↑ − n↓). (30)

where geff is the effective g factor in the presence of the spin–
orbit interaction and carrier–local-moment interaction [21, 22].
The photon power is calculated from

PL = nph

∫ ωm

0
h̄ωph dωph, (31)

where ωm is the maximum photon frequency considered.

3. Results and discussion

Our results are plotted in figures 1–4. We calculate the
photo-magnetization as a function of photon power, using
equations (27), (30) and (31). The parameters considered are:
G = 1 meV, γ c = 5.16×106 s−1, γ eh = 1.03×1013 s−1, Eg =
0.213 eV, U = 0.019 eV and J = −0.026 eV. The values

4
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Figure 1. Photo-magnetization (10−11 emu) versus laser power
(mW). Parameters used are: G = 1 meV, γ c = 5.16 × 106 s−1,
γ eh = 1.03 × 1013 s−1, Eg = 0.213 eV, U = 0.019 eV,
J = −0.026 eV, x = 0.135, h̄ω = 232 meV, p = pav. Experimental
points (�) are from [9].
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Figure 2. Photo-magnetization (10−11 emu) versus laser power
(mW) for different temperatures. The parameters used are as in
figure 1. Photo-magnetization decreases with increase in temperature
for a fixed laser power. The curves in decreasing order are for
temperatures 4.2, 5.2, 7.5, 10 and 15 K, respectively.

(This figure is in colour only in the electronic version)

of manganese concentration x(0.135) and the energy gap,
Eg, are taken from values considered by the experiments [9].
The value of G, the light semiconductor coupling energy, is
of the order of the attainable Rabi splitting. The relaxation
parameters γ c and γ eh correspond to relaxation times 2 ×
10−7 s and 10−13 s, respectively. Thus damping of excitons is
larger than the damping of the spin-polarized carriers. In other
words, the lifetime of excitons is a few orders of magnitude
smaller than the lifetime of the spin-polarized carriers. This
should be the case, otherwise there would have been no
magnetization, if the spin-polarized carriers had damped faster
than the excitons. Indeed the damping ratio of the spin excitons
to the spin-polarized carriers is of the order of 107, implying
that the damping of the carriers is almost negligible compared
to the exciton damping. The excitonic lifetime is of the order
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Figure 3. Photo-magnetization (10−11 emu) versus laser power
(mW) for two typical values of x (fraction of manganese ions)
= 0.132 and 0.135 (in increasing order). With increase in x ,
photo-magnetization increases. Other parameters are as in figure 1.
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Figure 4. Photo-magnetization (10−11 emu) versus laser frequency
(meV). Laser power chosen is 30 mW. Other parameters are as in
figure 1. The shaded box denotes the experimental value for
h̄ω = 232 meV. The decrease in photo-magnetization is inconsistent
with experimental observation [9].

of picoseconds (≈10−13 s). The experimental relaxation times
are also of this order [9].

The value of the Coulomb energy and the exchange energy
are expected to be reasonable for the system. Within the
paramagnetic phase of the diluted magnetic semiconductor,
particularly for the system under study, the magnitude of U
appears to be justified. Exact experimental values for these
are not available. Photon energy is considered greater than
the bandgap. The effective g value geff is taken equal to
100, because small energy gap and large spin–orbit interaction
in Hg1−x Mnx Te can give large g factors. This is also the
value considered by the experimenters. Thus, parameters
chosen tally with the values available from the experiment [9]
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Table 1. Photo-magnetization (10−11 emu) versus laser power (mW)
for different approximations. In the second column the calculated
results for the photo-magnetization are presented when the
probability (p) of finding the magnetic ion is p1 i.e. p1 = (1 − x)12.
The corresponding results in the third and fourth columns are for
p = p2 = 1 and p = pav = 1

2 (p1 + p2), respectively. The
experimental results are in the fifth column.

Photo-magnetization (10−11 emu)

Laser power (mW) p1 p2 pav pexp [9]

0 0 0 0 0
6 0.05 1.448 0.261 1.06

12 0.386 2.932 1.066 2.0
18 0.987 4.006 2.069 2.7
24 1.698 4.739 3.0 3.2
30 2.397 5.105 3.731 3.5
36 3.024 5.188 4.231 3.8
42 3.568 5.13 4.531 4.1
48 4.035 5.018 4.69 4.3
54 4.435 4.894 4.759 4.5
60 4.778 4.778 4.778 4.6

in Hg1−xMnx Te. We have compared our results with the
corresponding values of the experiment [9] in figure 1. We
find reasonably fair agreement between our theory and the
experiment. The subject assumes added importance in view
of the fact that a fervent search is going on to find carrier-
induced ferromagnetism in semiconductors, which would be of
importance in the futuristic spintronic and computer industry.

We shall now discuss our results. In equation (28),
we used the probability of finding magnetic ions in the fcc
lattice. However, with this value of probability, our results
show a decrease of magnetization vis-à-vis the experimental
values. The decrease is quite considerable up to the laser
power of 30 mW. On the other hand, if we take the probability
as unity, our values for the magnetization are higher than
the experimental values. Therefore, we have considered
an effective probability which is the average of these two
probabilities and the results are plotted in figure 1, using this
average probability, which shows reasonably good agreement
with experimental values. This is done, of course, at the cost
of self-consistency. The accuracy of the probability function
depends on the nature of the disorder due to the magnetic
impurities. Thus the treatment requires improvement over the
virtual crystal approximation. These results are presented in
table 1 in detail. The self-consistency is considered up to five
decimal places.

In figure 2 we have considered the temperature variations
of the photo-magnetization as a function of laser power.
With the increase in temperature the photo-magnetization
decreases, as it should. The temperature dependence is taken
into account via the Brillouin function. It may be noted
that the experimentalists have not shown any transition to
a ferromagnetic state. Hence the temperature variation is
consistent with that observed in a paramagnetic system. As
mentioned earlier, the maximum power considered by the
experimenters corresponds to a magnetic field of the order
of about a hundredth of an Oersted, which is much less than
the typical exchange field responsible for ferromagnetism. It
may be of interest to note, in passing, that light-induced

magnetization contributes to a very small increase in Tc in a
model (III, Mn)V system [19].

In figure 3, we have plotted the photo-magnetization
versus laser power for two magnetic-ion concentrations. With
the decrease in x , the photo-magnetization decreases, for
a given strength of laser power. This can be understood
as follows. With the decrease in x , the local-moment
concentration decreases and hence a reduction in the local-
moment magnetization. On the other hand, with the decrease
in x , the bandgap decreases, and hence the carrier density
should increase for a given laser power, increasing thereby
the magnetization. In the competition between these two
mechanisms, the former has an edge and thus we see a decrease
in the magnetization.

In figure 4, we have plotted the photo-magnetization as
a function of laser frequency for a fixed laser power 30 mW.
The observed trend is consistent with experiment for h̄ω �
232 meV because our parameters, chosen to plot figure 1,
are obtained for a photon energy of 232 meV. This may also
presumably be due to an increase in the exciton condensate
with an increase in the photon frequency, thereby decreasing
the spin density. This is also apparent from equation (26). With
the increase in h̄ω, there is an increase in the magnitude of b,
thus causing a decrease in n↑ and n↓.

In summary, we set up a many-body Hamiltonian,
which includes carrier kinetic energies, carrier–local-moment
and carrier–light-field interactions and all the Coulomb
interactions. We evaluate Heisenberg’s equations of motion for
the carrier densities and excitonic amplitudes in a mean-field
approximation. Non-equilibrium relaxations are considered
phenomenologically. The equations are solved and nonlinear
equations are obtained for n↑ and n↓ as functions of photon
density. The interdependence of the carrier spin density and
the local magnetic moment proportional to 〈Sz〉 is calculated
self-consistently. Temperature dependence is included through
the Brillouin function. Our results, based on a reasonable set of
parameters, agree with experiment on qualitative grounds. The
application of the theory to the system under study is mostly
qualitative and does not take into account the detailed physics
of the system.

There is still scope for considerable improvement of the
present work. Instead of considering the effective g value
in an ad hoc way, we can calculate it through a �k · �π (�π
being the momentum operator in the presence of spin–orbit
interaction) model that could be developed on a set of pre-
calculated energy levels for HgMnTe or HgTe. If this is done,
the two-band approximation can be improved and electron and
hole dispersions can be incorporated. Although, we considered
the photon frequency greater than the bandgap to suit the
narrow gap HgMnTe there is, we believe, nothing in this
theory which restricts it only to this case. The model can
also be explored for wide bandgap semiconductors with energy
gaps larger than the photon frequency. With regard to the
phenomenological use of the damping parameters, we wish
to make the following comments. If the system is in contact
with a heat bath, then after sufficient time has elapsed it must
reach a state which is, generally speaking, not stationary, since
the external field depends on time, but which is independent
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of the initial conditions. This inconsistency can be avoided
by following the Keldysh approach [23]. These would be for
future work and we shall report on it when the results are ready.
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